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Hysteresis Phenomenon in Deterministic Traffic Flows
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We study phase transitions of a system of particles on the one-dimensional
integer lattice moving with constant acceleration, with a collision law respect-
ing slower particles. This simple deterministic “particle-hopping” traffic flow
model being a straightforward generalization to the well known Nagel–Schrec-
kenberg model covers also a more recent slow-to-start model as a special case.
The model has two distinct ergodic (unmixed) phases with two critical values.
When traffic density is below the lowest critical value, the steady state of the
model corresponds to the “free-flowing” (or “gaseous”) phase. When the den-
sity exceeds the second critical value the model produces large, persistent, well-
defined traffic jams, which correspond to the “jammed” (or “liquid”) phase.
Between the two critical values each of these phases may take place, which
can be interpreted as an “overcooled gas” phase when a small perturbation
can change drastically gas into liquid. Mathematical analysis is accomplished
in part by the exact derivation of the life-time of individual traffic jams for a
given configuration of particles.
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1. INTRODUCTION

By a traffic flow we shall mean a collection of particles moving along
a straight line according to their velocities, and the law describing how
those velocities are changing (i.e., the acceleration or deceleration of par-
ticles) is called the traffic flow model. For a long time theoretical analysis
of traffic flow phenomena has been dominated by hydrodynamic models
in analogy to the dynamics of viscous fluid (see, e.g. refs. 9, 12, 17 and
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further references therein). The main problem with this approach is that
it gives no information about the behavior of individual vehicles. More-
over, the discrete nature of the traffic flow has some features (like traffic
jams) which do not have exact counterparts in the hydrodynamic interpre-
tation. Additionally, considered as a kind of viscous fluid, the traffic flow
turns out to have very peculiar properties. First, it is very much ‘compress-
ible’: the distance between two consecutive particles being originally quite
far from each other may shrink to zero under the dynamics due to a large
jam ahead of them. On the other hand, the opposite property does not
hold: the distance between two consecutive particles can be enlarged at
most by a constant depending on the parameters of the model but not on
time. Mention also that those hydrodynamic models are difficult to treat
in computer simulations of large networks, while it is hard to compare
parameters of the models with empirical investigations. To overcome these
difficulties cellular automata models have been invented in the beginning
of 90s (see refs. 4, 6 for reviews).

Consider a system of particles on the integer lattice Z
1 moving

with constant acceleration a ∈ R
1+ in a discrete time with a collision law

respecting slower particles. To make this description precise, we need a few
definitions. Each particle is described by the pair (i, xi), where i ∈Z

1 rep-
resents the position of the particle and xi ∈R

1 its velocity, which might be
both positive and negative. Fix a configuration of particles. For each i ∈Z

1

by i− � i we denote the site containing the particle from our configuration
closest to the site i from the left side, and by i+ >i the one containing the
particle closest to i from the right side (see Fig. 1). Note the asymmetry
of the definition: i− might be equal to i, while i+ is strictly larger than i.

We shall say that a configuration of particles is admissible if for any
i ∈Z

1 we have:

i+ − i− >max{0, xi− , −xi+ , xi− −xi+}, |xi±|�v, (1.1)

Fig. 1. Freely accelerating dynamics of particles. i± and i′± denote the positions of neigh-
boring particles at moments of time t and t + 1 and x± – corresponding velocities at time t .
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where v > 0 is a parameter of the system describing the maximal allowed
velocity. In other words, all particles in an admissible configuration can be
moved in arbitrary order by the distance equal to the corresponding veloc-
ities without collisions.

On admissible configurations the dynamics is defined as follows. First
we change simultaneously the coordinates (i, xi) of all particles according
to the rules:

i → i +�xi� (1.2)

xi →min{xi +a, v} (1.3)

where by �·� we denote the integer part of a number, i.e. �z� := max{n ∈
Z : n�z}. Denote also by �·� the smallest integer not smaller than the con-
sidered number, i.e. �z� :=min{n∈Z: n� z}.

After this operation for each particle (i, xi) for which the admissibil-
ity condition (1.1) breaks down (which correspond to a ‘collision’ at the
next step of the dynamics) we correct its velocity:

xi →min{xi, i+ − i− −1}. (1.4)

Then for all particles where the velocities remain negative we make an
additional correction:

xi →max{xi, i − (i −1)− −1−max{0, x(i−1)−}}. (1.5)

It is straightforward to check that after these corrections the configuration
of particles becomes admissible.2

Figure 2 illustrates the dynamics of our model in the case a=1/2 and
v=1. Here and in the sequel we mark the positions of particles in the con-
figuration by their velocities and the positions of holes by dots. The first
line in the figure corresponds to a finite segment of length 21 in the initial
configuration (i.e. at time 0) and the subsequent lines describe the same
segment for the moments of time from 1 to 6. Note that we have chosen
the segment such that the particles not shown in the figure do not influ-
ence the dynamics of the ones in the segment under consideration during
the first six time steps.

Due to the constant acceleration after a finite time (of order v/a) all
particles will start moving in the same (positive) direction. Therefore, since

2We emphasize that the update rules (1.2)–(1.5) are applied simultaneously to all particles in
a given configuration.
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Fig. 2. An example of the dynamics with a = 1
2 , v = 1. The positions of particles are

marked by their velocities and the positions of holes by dots.

we shall be interested mainly in the limit behavior of the system as time
goes to infinity, to simplify notation we shall assume from now on that
velocities of all particles are nonnegative3 and shall describe the system by
a configuration x ={xi}i ∈R

∞, where a nonnegative entry xi corresponds to
a particle at the site i with the velocity xi � 0, while all other sites (con-
taining ‘holes’) are set to −1 (having in mind that the ‘holes’ are moving
in the opposite direction to the particles). Under this assumption a con-
figuration x is admissible if for any i ∈Z

1 we have

i− +xi− <i+, xi ∈ [0, v]∪{−1}. (1.6)

The space of admissible configurations we denote by X. Using this nota-
tion the dynamics can be defined as a superposition of two maps T :=A◦
σ , where the maps σ :X →R

∞ and A:R∞ →X are defined as follows:

(σx)i :=
{

xi− if i− +⌊
xi−

⌋= i

−1 otherwise
, (1.7)

(Ax)i :=
{

min{xi +a, i+ − i −1, v} if xi �0

−1 otherwise
. (1.8)

The map σ is a (nonuniform) shift map, describing the simultaneous free
shift of all particles in the configuration x by distances equal to their
velocities, while the second map A describes the process of the acceler-
ation/deceleration of particles (see Figs. 1 and 2). Observe that after the
application of the map A any configuration becomes admissible which

3Note, however, that due to the argument above all results in the paper remain valid in the
initial setting with particle velocities of both signs.
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ensures that the map T preserves the space of admissible configurations
X.

The dynamics described by the map T for integer values of the
parameter a >0 coincides with the deterministic version of the well known
Nagel–Schreckenberg model (see e.g., refs. 4 and 6 for reviews). Note also
that a version of the Nagel–Schreckenberg model for continuous values of
the velocities and spatial coordinates was discussed in ref. 7.

We allow the velocity of a particle to be any real number between 0
and v, but since the particles are moving on the integer lattice the actual
shift of a particle (described by the map σ ) is an integer, which means that
a particle starts moving only when its velocity becomes greater or equal
to 1.

One of the most striking observations in the theory of traffic flows
is the fact that in a large number of models as time goes to infinity the
limit ‘average velocity’ of the flow depends only on its density and does
not depend on the finer characteristics. This dependence is called ‘fun-
damental diagram’ in physical literature. Originally this observation has
been established numerically for finite lattices with periodic boundary con-
ditions, or in our terms for space periodic configurations.4 Later this result
has been proven rigorously for a broad class of models,(2,3,15) assuming
that the ‘average velocity’ is, indeed, the average velocity along a config-
uration, which we shall call the ‘space average velocity’.

Recently a number of nonmarkovian traffic flow models demonstrat-
ing the so called ‘metastable states’ (see, e.g. refs. 1, 8 and 13 and refer-
ences therein) have been introduced. Numerous numerical simulations of
those models show that in distinction to the previous models the ‘space
average velocity’ wildly fluctuates in time. Our own numerical results also
show the same phenomenon with fluctuations up to 100% of the ‘aver-
age’ value if the acceleration a < 1. To demonstrate this choose a space
periodic configuration with the spatial period of length 6 consisting of
the periodically repeating pattern [01..1.]. Considering the dynamics with
a = 1

2 , v =1 of only the main period of the configuration we get: 01..1.→
a.1..0 → 1..1.0 → .1..0a → ·· · . As we see starting from the second iterate
the ‘space average velocity’ fluctuates in time periodically. In general the
limit as time goes to infinity ‘space average velocity’ may not exist at all,
moreover, both upper and lower limits may fluctuate in time as well. This
shows that such approach is not adequate here. On the other hand, the
‘space average velocity’ tells almost nothing about the movement of indi-
vidual particles. Therefore, it looks reasonable to consider the averaging in

4Indeed, an admissible configuration with a spatial period � remains periodic in space with
the same spatial period � which explains the connection to numerical results.
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Fig. 3. Fundamental diagram for T : dependence of the limit average velocity V̄ on the
density of particles ρ. Here w :=�1/a�.

time for individual particles instead of the averaging in space. Note that
due to the nonergodicity of the process under study these two quantities
need not to coincide. On the other hand, it will be shown that the ‘time
average velocity’ behaves much better and the main result of this paper is
the proof that the limit ‘time average velocity’ V̄ (x) for an admissible reg-
ular5 configuration x ∈X having a density ρ is described by the following
multivalued function

FDV
a,v(ρ)=min{v,

1/ρ −1
�1/a� } ∪ 1[(1+�1/a�v)−1, (1+v)−1](ρ) ·v, (1.9)

corresponding to the fundamental diagram shown in Fig. 3. The last term
in the above relation describes the upper (unstable) branch of the funda-
mental diagram. Details related to lower and upper densities/velocities and
non-regular configurations will be discussed in Section 3. Let me emphasize
that non-regular configurations are not excluded and results related to the
fundamental diagram are obtained for all configurations having densities.

Let us mention connections between the model under study and
some previously considered cases. In the case when all velocities of par-
ticles are positive integers and the acceleration a is an integer as well we
immediately recover the deterministic version of the well known Nagel–
Schreckenberg model introduced in refs 14. If one assumes that a �v then
our system coincides with the one studied analytically in refs. 2, 3. It is
known that in the case a � v the asymptotic behavior is much simpler,
in particular, only free flowing particles or free flowing holes may show
up, and, moreover, traffic jams cannot grow in time. There is also another
more technical difference due to the fact that in that case the dynamics of
holes is completely symmetric to the dynamics of particles. This symme-
try was heavily used in refs. 2, 3 for the analysis of the dynamics of high

5See definition in Section 3.
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density particle configurations. If a < 1 there is no independent dynamics
of holes as such: to define their dynamics one inevitably needs to take into
account the velocities of particles. Therefore, the analysis of a very compli-
cated dynamics of high density particle configurations cannot be reduced
to the low density case. Fortunately, as we shall see in the ‘jammed’ phase
the dynamics of individual holes becomes periodic in time (but not in
space) after some initial stage. We shall see that if a<1 then when the par-
ticle density exceeds some critical value the traffic jams can grow in time
and, moreover, an arbitrary small jam (say, consisting of a few particles)
may become arbitrary large with time.

It is worth note that when the reciprocal to the acceleration a

is an integer and the initial configuration has only integer velocities
the model we are discussing coincides with the recent ‘slow-to-start’
model, which was extensively studied on the numerical level (see e.g. refs.
8, 13, 16 and references therein), but no analytical results have been
obtained so far. This model (being non-markovian in the sense that the
dynamics depends on the history) turned out to be the first one dem-
onstrating large fluctuations in ‘space average’ statistics or ‘metastable
states’.

In this paper, we restrict the analysis to the case of slow particles with
v = 1, because the analysis of the fast particles with v > 1 and/or several
lanes uses a rather different mathematical apparatus – substitution dynam-
ics. Moreover, in the general fast particles case (when v>1) additionally to
(static) traffic jams that we consider in this paper there are new types of
(dynamic) jams when all particles in a jam might have positive velocities
and are moving as a whole with the velocity strictly less than v. These new
types of jams lead to additional branches in the fundamental diagram and
will be discussed elsewhere. Still since some of technical results obtained
in the paper remain valid for any v ∈ Z

1+ we shall keep the notation v

throughout the paper and shall specify explicitly if only the case v = 1 is
considered.

The paper is organized as follows. In the next section, we introduce
basic notions including the notion of the traffic jam and its characteristics
such as a basin of attraction and a life-time, and derive results describing
their exact values as functions of a given configuration. Using these results
in Section 3 we prove the validity of the fundamental diagram and provide
its stability analysis in Section 4. An alternative (more intuitive) proof of
the validity of the fundamental diagram via space-time averaging is given
in Appendix.
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2. DYNAMICS OF TRAFFIC JAMS

For a finite segment x[n,m], n<m∈Z
1+ ∪{0}=: Z1

�0 of a configura-
tion x ∈ X we define the density of particles ρ(x[n,m]) as the number of
particles in the segment Np(x[n,m]) divided by the length of the segment,
i.e.

ρ(x[n,m]) := Np(x[n,m])
m−n+1

= 1
m−n+1

m∑
i=n

1�0(xi), (2.1)

where 1�0(·) is the indicator function of the set of nonnegative numbers.
The generalization of this notion for the entire infinite configuration x ∈X

leads to the notion of lower/upper densities:

ρ±(x) := lim
n→∞

(
sup
inf

)
ρ(x[1, n]), (2.2)

where (and in the sequel) lim sup corresponds to the index ‘+’ and lim inf
to the index ‘−’. If the lower and upper densities coincide their common
value ρ(·) will be called the density of the configuration. According to
Birkhoff ergodic theorem for any translationally invariant measure on the
integer lattice the set of configurations having densities is the set of full
measure. In particular, for any space periodic configuration the density is
well defined.6 Probably the analysis of configurations with well defined
densities would suffice, but since some configurations with differing lower
and upper densities lead to interesting behavior we shall treat them as
well.

The reason to fix m= 1 in the definition above is that for any given
integer m the limit points as n→∞ of the sequence {ρ(x[m,n])}n are the
same and do not depend on m. The asymmetry with respect to the left
and right ‘tails’ of the configuration reflects the fact that roles of those
‘tails’ are rather different in the long term dynamics. In particular, con-
sider two symmetric (to each other) configurations: y(0) having holes at all
negative sites and particles at all positive ones, and y(1) having particles at
all negative sites and holes at all positive ones. Any particle in the con-
figuration y(0) has zero velocity and will never move; on the other hand,
any given particle in y(1) will eventually with time get the largest possible
velocity v.

6Thus in numerical simulations only configurations with well defined densities can be
observed.
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Now we are ready to define time and space average velocities. Since
the case when there are no particles in the configurations does not make
any sense from the dynamical point of view, from now on we shall assume
that any admissible configuration contain at least a finite number of parti-
cles. Let L(x, i, t) be the distance covered during t time steps by the parti-
cle initially (at t =0) located at the site i− of the configuration x. Denote

V̄ time(x, i, t) ≡ V̄ (x, i, t) := 1
t
L(x, i, t) (2.3)

V̄±(x, i) := lim
t→∞

(
sup
inf

)
V̄ (x, i, t) (2.4)

V̄ space(x[−n,m]) := 1
Np(x[−n,m])

m∑
i=−n

1�0(xi) · �xi� (2.5)

V̄
space
± (x) := lim

n,m→∞

(
sup
inf

)
V̄ space(x[−n,m]). (2.6)

In other words V̄ space describes the average velocity along all particles in a
given configuration, while V̄ corresponds to the average in time velocity of
a given particle. More precisely these quantities describe average effective
velocities since we take into account only the actual movement of particles
and thus drop fractional parts of their velocities.

As we shall show the time average statistics (in distinction to the
space average one), does converge to the limit as time goes to infinity and
the result does not depend on the initial site i, i.e. V̄ (x, i)≡ V̄ (x).

To this end, let us show that the upper and lower densities are invari-
ant with respect to dynamics.

Lemma 2.1. ρ±(T x)=ρ±(x) for any configuration x ∈X.

Proof. For any n,m∈Z�0 we have

|Np(x[−n,m])−Np((T x)[−n,m])|�2, (2.7)

since during one iteration of the map at most one particle can enter the
interval of sites from −n to m (from behind) and at most one particle can
leave this interval.7

7If only nonnegative velocities are considered 1 (instead of 2) would suffice in the inequal-
ity (2.7), but in order to be valid in the original setting with velocities of both signs we put
2 here.
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By the definition of the lower density there is a sequence of integers

nj
j→∞−→ ∞ such that

Np(x[1, nj ])
nj

j→∞−→ ρ−(x).

On the other hand, due to the inequality (2.7) it follows that ρ−(x, ) is a
limit point for partial sums for the configuration T x. Therefore we need
to show only that this is, indeed, the lower limit. Assume, on the contrary,
that there is another limit point, call it ξ , for the partial sums for T x such
that ξ < ρ−(x). Doing the same operations with the partial sums for T x

converging to ξ we can show that this value is also a limit point for the
partial sums for the configuration x, and, hence, ξ cannot be smaller than
ρ−(x).

The proof for the upper density follows from the similar argument.

Introduce a weight function:

w(z) :=
{�(1− z)/a� if z�0

0 otherwise . (2.8)

Referring to this function we shall drop the dependence on z if z = 0 to
simplify notation, i.e. w(0)≡w.

Lemma 2.2. Let x ∈ X and let the limit V̄ (x, i) be well defined.
Then for any j ∈ Z

1 the limit V̄ (x, j) is also well defined and coincides
with V̄ (x, i).

Proof. Observe that for any x ∈X and any i ∈Z
1 the particles at the

sites i− and i+ (call them left and right ones) are consequent. After each
iteration of the map T the distance between these particles changes by the
difference between their velocities, which might take values between 0 and
v. Since the left particle can be slowed down only by the right one, we
see that for any moment of time t the distance between the particles can
be enlarged at most by wv. Indeed, the longest time spent on the same
site by the left particle while the right one already started moving cannot
exceed w. On the other hand, the maximal distance the right particle can
cover during this time is wv. Thus

0� (i+ +L(x, i+, t))− (i− +L(x, i−, t))� i+ − i− +wv

or

i− − i+ �L(x, i+, t)−L(x, i−, t)�wv.
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Dividing by t and using the definition of the time average velocity we get

|V̄ (x, i, t)− V̄ (x, i+, t)|�max
{

1
t
wv,

1
t
(i+ − i−)

}
t→∞−→ 0. (2.9)

Thus V̄ (x, i) = V̄ (x, i+) for any i. Using the same argument for (i − 1)−
and i+ instead of i one extends this result to neighboring particles, and
repeating this argument to all particles in the configuration.

This shows that if the limit V̄ (x, i) exists for some site i then the time
average velocity is well defined, but we still have to check the existence of
at least one ‘good’ site. On the other hand, as we have shown the average
velocity do not depend on the left tail of a configuration. Therefore, it is
reasonable to introduce for a configuration x ∈ X the notion of its class
of equivalence x̂ which includes all configurations from X which coincide
with x starting from some site, i.e. x, y ∈ x̂ if ∃k ∈Z

1: xi =yi ∀i �k.
Clearly in the absence of obstacles all particles are moving freely.

Therefore to understand the dynamics we need to study the motion of
‘jams’ as the only possible obstacles to the free motion of particles. We say
that a segment x[n,m] with n�m corresponds to a jam if

0�xi <1 ∀i ∈{n, . . . ,m}, (2.10)

xn−1 <0, |xm+1|�1. (2.11)

In other words the jam x[n,m] is a locally maximal collection of consecu-
tive particles having zero velocities with the possible exception of the lead-
ing one (located at the site m) whose velocity is strictly less than 1. For
example, in the configuration

. . . (a) . . . (0) . . .1 . . . (00)1 . . . (000a).1 . . .

the jams are marked by parentheses.
The number of particles and their positions in a jam may change with

time: leading particles are becoming free and some new particles are join-
ing the jam coming from behind. However, only one such change at a time
might happen, and, in particular, a jam cannot split into several new jams.
Therefore, we can analyze how a given jam changes with time and the
main quantity of interest for us here is the minimal number of iterations
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Fig. 4. Dynamics of basins of attraction whose boundaries are marked by square brackets.

after which the jam will cease to exist. Denote by J (t) the segment cor-
responding to the given jam at the moment t (in this notation J (0) is the
original jam). Then by the life-time of the jam J we shall mean

τ(J ) := sup{t : |J (t)|>0, t >0}, (2.12)

where |A| is the length of the segment A.
‘Attracting’ the preceding particles, a jam plays a role similar to an

attractor in dynamical systems theory. Therefore it is reasonable to study
it in a similar way and to introduce the notion of the basin of attraction
(notation BA(J )) of the jam J :=x[n,m], by which we mean the segment
x[k,m] with k�n�m of the configuration x containing all particles which
will eventually at positive time join the jam or can be stopped by a particle
from the jam J during the time τ(J )+ 1.8 Examples of basins of attrac-
tion and their dynamics are shown in Fig. 4.

Let us introduce the weight W(x[n,m]) of a segment x[n,m] with
n�m as

W(x[n,m]) :=wNp(x[n,m−1])+w(xm)

≡w · (m−n) ·ρ(x[n,m−1])+w(xm). (2.13)

The first term in this expression gives the contribution from all particles in
the segment except for the leading one, which is described by the second
term.

8The last assumption excludes the only possibility for a particle to create a new jam when it
does not join an existing jam J but is stopped at the time τ(J )+1 by the last particle in it
which just get the velocity 1 but did not start moving yet. Consider an example: .1.a → ..01.
Here a particle preceding the jam J containing the only particle with velocity a is stopped
at the next moment of time (and creates a new jam) when the jam J already ceased to exist.
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Theorem 2.1. Let v =1, a �1 and let J (0) :=x[n,m] with n�m be
a jam. Then its basin of attraction BA(x[n,m]) is the minimal segment
x[k,m], k �n�m for which relations

Nh(x[k,m])+1=W(x[k,m]), (2.14)

xk−i <1− ia, i =1,2 (2.15)

hold true,9 where Nh(x[k,m]) is the number of holes in the segment
x[k,m]. Moreover,

τ(J )=W(BA(J )), (2.16)

i.e. the life-time of the jam is equal to the weight of its basin of attraction,
and under the dynamics the BA of a jam is transformed to the BA of the
remaining part of this jam.

Relations (2.14), (2.15) give a very simple algorithm to find the left
boundary k of a BA: we move to the left until the number of holes in
the segment x[k,m] will become equal to the weight of this segment minus
one. After this we check the condition (2.15) and continue the procedure
if it does not hold or stop otherwise.

Proof. First, let us rewrite the relation (2.14) in a more suitable way.
From the definition of the weight function it follows that for k � m we
have

Np(x[k,m])=�W(x[k,m])/w�. (2.17)

On the other hand, we have the trivial identity

m−k +1=Np(x[k,m])+Nh(x[k,m]),

which together with (2.17) yields a new relation equivalent to (2.14):

m−k +2=W(x[k,m])+�W(x[k,m])/w�. (2.18)

9When there is no segment satisfying (2.14) and (2.15) we set k =−∞, i.e. the BA coincides
with the entire ‘left tail’. Note that the relations (2.14), (2.15) give only an implicit informa-
tion about the BA, which differs significantly from the result in refs. 2, 3 where the much
simpler case a =v has been considered.
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Consider now in detail the dynamics of a BA of a jam. Two exam-
ples are shown in Fig. 4, where a = 1/2 and we denote as usual holes
by dots and mark particles by their velocities. In both examples the jams
consist of particles having initially zero velocities, and the right panel dem-
onstrates the reason of the inequalities (2.15), which exclude too slow par-
ticles that cannot join the jam. Observe that if one changes the velocity of
the first particle in the right panel from 0 to, say a, then the left bound-
ary of the BA goes to the left since the particle immediately preceding the
left bracket will be stopped by the last particle in the former jam at the
moment of time when it gets velocity 1.

Let us show that a basin of attraction of a jam either consists of a
single site, or its first site is occupied by a hole (i.e. xk =−1). To do this,
consider a function

φ(�) :=W(x[m−�,m])+�W(x[m−�,m])/w�, �∈R
1
+.

According to the definition of the weight of a segment (2) we can write
the left boundary of the BA(x[n+1,m])=x[k,m] as k =m− �̃, where �̃ is
the smallest nonnegative solution to the equation

�+2=φ(�). (2.19)

The function φ(�) is piecewise constant with jumps of amplitude (w + 1)

at integer points corresponding to the lattice sites i where xi �0 (i.e. where
there is a particle in the configuration x), and φ(0)=w(xm)+1. Note that
at a jump point the value of φ corresponds to the upper end of the jump.

There might be two possibilities:

• xm ∈ [1−a,1). Then φ(0)=w(xm)+1= (w −1)+1=w. Hence, the
smallest nonnegative solution to Eq. (2.19) occurs at the origin. This case
corresponds to the BA consisting of a single site.

• xm ∈ [0,1−a). In this case φ(0)=w(xm)+1>(w−1)+1=w. Thus
the starting point φ(0) of the graph φ(�) is higher than the starting point
of the straight line �+w. Hence the first intersection between these graphs
occurs at a horizontal piece of the graph of φ(�) and thus it corresponds
to a hole.

It remains to take into account the inequalities (2.15). If at an inter-
section point they are satisfied, then the result is proven, otherwise, due to
the presence of particles in the segment of length 2 immediately preceding
to the interval [m − �,m], the graph φ(�) makes some positive jumps of
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amplitude w + 1 each. Therefore considering the graph after these jumps
we are in the same position as in the second case considered above and
can apply the same argument about the intersection point. Checking again
the inequalities (2.15) and continuing the procedure (if necessary) we are
finishing this part of the proof.

Thus if k < m then the first site k of x[k,m] is occupied by a hole
(i.e. xk < 0), while the last site m is always occupied by a particle with
the velocity xm < 1 (since x[n,m] is a jam). Therefore after the applica-
tion of the map T the velocity of the particle at the site m increases by
a and either this particle becomes free and leaves the jam (if xm + a � 1,
which yields that the new leading particle of the jam is located at the site
m′ := m − 1), or the velocity remains below the threshold 1 and m′ := m.
In both cases the weight of the segment x[k,m′] decreases by 1. Hence,
the solution to the equation (2.19) with m = m′ occurs now at the point
�̃′ := �̃+1 which yields k′ :=k+1, i.e. the left boundary of the BA is shifted
by 1 position to the right, and the resulting segment x[k′,m′] is again the
BA of the remaining part x[n,m′] of the jam.

Note also that once we have found the solution to the system (2.14),
(2.15) then for all subsequent time steps the inequalities (2.15) will be
satisfied automatically, since the particles immediately preceding the BA
cannot outstrip the left boundary of the BA which is moving with the
velocity 1.

Now, since after each iteration of the map T the weight of the BA
decreases by 1, we deduce that the original weight of the BA is equal to
the life-time of the jam.

Let us give also a short explanation to the “physical meaning” of the
formula (2.18). As we just have shown after each iteration the left bound-
ary of the BA increases by 1, while the right boundary decreases by 1 once
per w iterations, and thus the “space-time shape” of the BA represents a
skewed to the right triangle (see Fig. 4). When eventually the BA size van-
ishes, the length of the original BA calculated using these two observations
gives the relation (2.18).

This result shows that if all jams in the configuration x ∈X have finite
BAs (or finite life-times, which is equivalent) then eventually with time all
particles will become free.

3. VALIDITY OF THE FUNDAMENTAL DIAGRAM

Let us consider the dynamics of jams in more detail.
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Lemma 3.1. Let v=1, a �1, y ∈X and let ρ+(y)<γ1 := (1+wv)−1.
Then, there is a configuration x ∈ ŷ in which only finite life-time jams may
be present.

Proof. Choose a representative x ∈ ŷ satisfying the assumption that
ρ(x[−n,0])

n→∞−→ ρ+(y) and assume contrary to the statement of the
Lemma that there exists a jam J =x[n,m] with n<m<∞ having an infi-
nite BA. (We do not exclude the case n=−∞ here.) Then by (2.18) using
the same construction as in the proof of Theorem 2.1 for any k <m we
get:

m−k <W(x[k,m])+�W(x[k,m])/w�.

On the other hand, by (2)

W(x[k,m])�ρ(x[k,m]) · (m−k +1) ·w.

Hence,

ρ(x[k,m]) · (m−k +1) ·w +�ρ(x[k,m]) · (m−k +1)�>m−k.

Passing to the limit as k →∞, we come to a contradiction:

ρ+(x)� (w +1)−1 ≡γ1 >ρ+(x).

As we shall see the critical value γ1 := (wv + 1)−1 gives the upper
bound for the existence of a “stable” free-flowing phase. One might think
that under the conditions of Lemma 3.1 all configurations with densities
below the critical value γ1 cannot have infinite life-time jams. To show
that this is not the case consider the configuration y(1) having particles
only at sites with negative coordinates. Then ρ(y(1))= 0, but the segment
y(1)[−∞,−2] of this configuration corresponds to a jam, and since it has
an infinite number of particles, the life-time of this jam is infinite as well.

Lemma 3.2. Let v = 1, a < 1, x ∈X and let in the configuration x

there exist a jam J (t) with the infinite BA (i.e., |J (t)| > 0 ∀t � 0). Then
each hole in x, located originally to the right of J (0), starting from the
moment of time when this hole meets with the particle that was the lead-
ing one in the jam J (0) will start moving periodically by one position to
the left exactly once per w time steps.



Hysteresis Phenomenon in Deterministic Traffic Flows 643

An immediate extension of this result is the following observation.
Let us call the largest moment of time at which a given hole meets a par-
ticle the life-time of this hole. Then under the assumption of Lemma 3.2
the motion of each hole having an infinite life-time is eventually periodic
with the period w.

Proof. Observe that since there is at least one infinite life-time jam,
then each particle belonging to its BA (i.e. located to the left of J ) will
eventually join the jam J . On the other hand, according to the dynamics
the leading particle in the jam J is becoming free exactly once per w time
steps. Thus these free particles are passing holes (i.e. exchanging positions
with them) exactly once per w time steps (needed for the leading particle
in a jam to achieve the velocity 1 and to start moving).10

This result provides us with the key observation to the calculation of
the time-average velocity in the jammed phase.

Assuming that a configuration x ∈ X satisfies the assumptions of
Lemma 3.2 let us consider in detail the dynamics of a hole located ini-
tially at a site j to the right of an infinite life-time jam. According to
Lemma 3.2 after some finite transient period this hole will start moving
periodically by one position to the left once per w time steps. Denote by
ϑj the duration of the transient period and by Kj the number of parti-
cles which the hole will meet during this time. Then we can characterize
the deviation of the movement of the hole from the periodic one by the
defect of the transient period Dj :=Kj −ϑj/w.

We shall say that a configuration x ∈X is ultimately jammed if there
is a representative x̂ from the same equivalence class in which for any
n∈Z

1 there is a jam Jn(t) in the configuration x̂ with the infinite BA and
Jn(0)>n, i.e. at the moment t =0 the jam Jn(0) starts further to the right
from the site n. Since the dynamics of a particle do not depend on parti-
cles located to the left from it we shall assume (to simplify notation) that
in an ultimately jammed configuration all sites with nonpositive numbers
are occupied by particles with zero velocities.

Now we are ready to formulate the regularity property mentioned
in Introduction. Let in an ultimately jammed configuration x holes with
nonnegative positions are located at sites {jk}. We shall say that the

10Note that even when v > 1 and some holes may be trapped inside a jam, the situation
remains the same due to a similar argument. Moreover, whence a particle will join some
jam (non necessarily with an infinite BA) and will go through it, it will start passing holes
exactly once per w time steps.
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configuration x is regular if the functional

Reg(x) := lim sup
jk→∞

|Djk
|/jk (3.1)

describing statistics of absolute values of normalized defects vanishes. In
other words the regularity means that defects of transient periods can
grow only at a sublinear rate. Observe that any spatially periodic ulti-
mately jammed configuration is regular11 and that the property to be ulti-
mately jammed is preserved under the our equivalence relation.

The following statement describes the limit velocity statistics for high
density configurations.

Lemma 3.3. Let v = 1, a < 1, x ∈ X and let x be an ultimately
jammed configuration.12 Then

∣∣∣∣V̄±(x)−
(

1
ρ∓(x)

−1
)

w−1
∣∣∣∣�

(
1

ρ∓(x)
−1

)
Reg(x). (3.2)

Proof. Observe first that we are in a position to apply Lemma 3.2.
For any i ∈Z

1 the total distance L(x, i, t) covered by the particle initially
located at the site i− in the configuration x ∈ X during the time t > 0 is
equal to the number of holes encountered by the particle during this time.
For a given t > 0 denote by it the original position (at moment t = 0) in
the configuration x of the last hole our particle meets during the time t .
Then in the segment x[i−, it ] there are exactly L(x, i, t) holes and, hence,
its length it − i− can be found from the equation:

(it − i−) · (1−ρ(x[i−, it ]))=L(x, i, t),

while the number of particles in this segment is equal to

Np(x[i−, it ])= (it − i−) ·ρ(x[i−, it ]).

Thus

Np(x[i−, it ])=L(x, i, t) · ρ(x[i−, it ])
1−ρ(x[i−, it ])

. (3.3)

11Clearly this property holds if distances between successive infinite life-time jams are uni-
formly bounded. See Lemma 3.7 for more general situations.

12According to Lemma 3.1 if the density is below γ1 then all jams have finite BAs. Therefore
the assumption about the presence of jams with infinite BAs yields the implicit assumption
on the density.
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During the time t the hole initially located at the site it will meet with
all those Np(x[i−, it ]) particles. Since we are interested in the long term
dynamics we may assume that t is so large that there is at least one infi-
nite life time jam between the sites i− and it , which guarantees that t >ϑit .
Therefore

Np(x[i−, it ])= t −ϑh(it )

w
+Kit =

t

w
+Dit .

Substituting the obtained relation to Eq. 3.3 we get

t

w
+Dit =L(x, i, t) · ρ(x[i−, it ])

1−ρ(x[i−, it ])
,

which gives

V̄ (x, i, t) = 1
t
L(x, i, t)

= 1
w

(
1

ρ(x[i−, it ])
−1

)
+

(
1

ρ(x[i−, it ])
−1

)
Dit

t
. (3.4)

Observe now that t � it and hence

|Dit |/t � |Dit |/it .

Therefore passing to the upper/lower limit as time goes to infinity and tak-
ing into account that it

t→∞−→ ∞ we get the result.

Another more intuitive argument for the proof of this statement
based on a space-time averaging will be discussed in the Appendix.

The following result demonstrates the importance of the regularity
assumption for the convergence of the limit velocity.

Lemma 3.4. Let x be an ultimately jammed configuration with
Reg(x)> 0. Then even if ρ−(x)= ρ+(x)= ρ(x)< 1 the limit points of the
time average velocity may differ from the value (1/ρ(x)−1)/w.

Proof. If the regularity assumption is not satisfied then there exists
a sequence of positions of holes 0<j1 <j2 < · · · such that

lim
k→∞

|Djk
|/jk =Reg(x)>0.
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Assume contrary to our claim that V̄ (x)= (1/ρ(x)− 1)/w. Then it /t
t→∞−→

V̄ (x)>0 and therefore the second term in the relation (3) describing fluc-
tuations around the time average velocity does not vanish with time. We
came to the contradiction.

Corollary 3.5. Let x be an ultimately jammed configuration with
the density γ1 <ρ(x)<γ2 and with Reg(x)> 0 and let the lower limit of
normalized defects differ from the upper one. Then using the same argu-
ment as above one can show that the values V̄±(x) differ as well.

Lemma 3.6. The assumption in Lemma 3.3 that the configuration
x is ultimately jammed is a necessary one and it is always satisfied if

ρ−(x)>γ2 := (1+v)−1. (3.5)

Proof. If there is only a finite number of jams then particles origi-
nating from them might meet holes that were never met by other particles
before. Assume now that in the configuration x only finite life-time jams
can be present. Since a free particle should have at least v holes immedi-
ately ahead of it and since the length of the BA of a jam of n particles
exceeds w(n− 1), we deduce that in any segment of length � there are at
most �/(v +1) particles, provided that � is large enough.

It remains to show that under the assumption (3.5) there is an infinite
number of infinite life-time jams. Assume that this is not the case, i.e. there
exists n∈Z

1 such that in the segment x[n,∞] only finite life-time jams are
present. Then, we can apply the argument in the first part of the proof
to this segment to demonstrate that this assumption leads to the inequal-
ity ρ−(x[n,∞]) < γ2. We came to the contradiction since ρ−(x[n′,∞]) =
ρ−(x[n,∞]) for any n′ <n.

A more detailed analysis of the regularity functional improves sub-
stantially the result of Lemma 3.3. Moreover, the sufficient condition for
the regularity property can be formulated in terms of gaps Gk :=x[nk,mk]
between successive infinite life-time jams. Define

Reg(x) := lim sup
k→∞

|Gk|/mk. (3.6)

Lemma 3.7. Let v = 1, a < 1, x ∈ X and let x be an ultimately
jammed configuration. Then

(a) 0�Reg(x)�1/2,

(b) Reg(x)�Reg(x), hence Reg(x)=0 implies Reg(x)=0,

(c) Reg(x)=Reg(x)≡0 if ρ−(x)=ρ+(x)>γ2.
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Proof. Consider a gap Gk between two successive infinite life-time jams
Jk, Jk+1. According to its definition the gap may contain only free particles and
finite life-time jams together with their basins of attraction (otherwise those
jams will have an infinite life-time). Therefore for each particle in the gap there
should be at least one hole, which yields the assertion (a).

To prove the assertion (b) observe that for a hole located initially at
a site j we have 0�Kj �ϑj and thus

|Dj |= |Kj −ϑj/w|� (1−1/w)ϑj .

Now the statement follows from the observation that for a hole located in
the gap Gk the length of the transient period cannot exceed |Gk|+w.

Assume now contrary to the last assertion that there is a configura-
tion x ∈ X with ρ−(x) > γ2 and Reg(x) > 0. Then there is a sequence of
gaps Gk in x such that

|Gk|
mk

mk→∞−→ Reg(x)>0.

According to the proof of the assertion (a) the density of particles in any
gap Gk cannot exceed 1/2. Therefore considering the configuration x as a
sequence of successive alternative blocks of particles Jk and gaps Gk and
taking into account that lengths of jams Jk should go to infinity with k

(otherwise ρ−(x)�γ2 =1/2 since |Gk| k→∞−→ ∞) we see that either Reg(x)=0
or ρ−(x)<ρ+(x) (since x consists of alternative linearly growing blocks of
two types Ji with ρ(Ji)=1 and Gi with ρ(Gi)�1/2).

From these technical statements we derive the main result about the
fundamental diagram.

Theorem 3.1. Let v =1, a �1, x ∈X. If

(a) ρ+(x)<γ1 := (1+wv)−1 then V̄ (x)=v,

(b) ρ−(x)>γ1 and x is not ultimately jammed (hence ρ−(x)<γ2) then
V̄ (x)=v,

(c) ρ−(x)>γ1 and x is ultimately jammed then

∣∣∣∣V̄±(x)−
(

1
ρ∓(x)

−1
)

w−1
∣∣∣∣�

(
1

ρ∓(x)
−1

)
Reg(x),

(d) ρ−(x)=ρ+(x)=ρ(x)>γ2 then V̄ (x)= ( 1
ρ(x)

−1)w−1.
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Proof. By Lemma 3.1 under the condition ρ+(x) < γ1 only jams
with finite life-times may be present in x. Consider a partition of Z

1 by
nonintersecting finite BAs of jams in the configuration x and their com-
plement. Choose one of those BAs and denote by i the site containing
the first particle preceding this BA. Even if originally this particle does not
have velocity one it will get this velocity (and will start moving) at most
after w iterations. On the other hand, by the definition of the BA this par-
ticle (which does not belong to any BA to the right of it) will never join a
jam after the first moment of time when V̄ (x, i, t)=1. Finally, Lemma 2.2
finishes the proof of item (a).

To prove the existence of the upper branch of the fundamental dia-
gram it is enough to show that for any 0 < γ < γ2 := (1 + v)−1 there are
configurations with particle density γ and such that eventually with time
all their particles will become free. To demonstrate this, consider a space
periodic configuration x ∈X with the space period of length 2� in which
only even sites 0,2, . . . , �2�γ � are occupied by particles with velocity 1,
while all other sites are occupied by holes. Clearly, all particles in this
configuration are free and will remain free under dynamics. On the other

hand, the density of this configuration ρ(x)= 1
2�

�2�γ � �→∞−→ γ .
The remaining part of Theorem 3.1 describing the lower branch

of the fundamental diagram follows immediately from Lemmas 3.3, 3.6,
3.7.

Obtained results give a complete characterization of the time statis-
tics of a configuration x for which the density ρ(x) is well defined or if it
is not well defined but either ρ+(x)<γ1 or ρ−(x)>γ2. Let us show that
there are other situations with much wilder behavior.

Lemma 3.8. Let v =1, a �1. Then there exists a configuration y ∈
X such that ρ−(y)=0, ρ+(y)=1 and V̄−(y)=0, V̄+(y)=1.

Proof. We shall construct the configuration y as follows. First we set
yi := −1 ∀i � 0, i.e. we fill in the non positive sites by holes. Then, we
shall fill the remaining sites by alternative blocks Bi consisting either only
of particles with zero velocities or only of holes. The lengths �i :=|Bi | of
those blocks we define inductively:

�1 :=1, �2 :=w�1 , �3 :=w�1+�2 , . . . , �k+1 :=w
∑k

i=1 �i , . . .

Denoting nk :=∑k
i=1 �i we get �k+1 =wnk and nk+1 =nk +�k+1 =nk +wnk .

Therefore

ρ(y[1, n2k+1])� �2k+1

n2k+1
= wnk

nk +wnk

k→∞−→ 1.
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Using a similar argument, but counting holes instead of particles we get:

1−ρ(y[1, n2k])� �2k

n2k

k→∞−→ 1.

Thus, ρ(y[1, n2k])
k→∞−→ 0. This proves the claim about the lower and upper

densities.
Observe now that ∀k � 0 the block Bk+1 corresponds to a jam of

length �k+1 and that all particles to the left of this jam lie in the segment
x[1, nk], whose length is equal to logw(�k+1). Therefore by Theorem 2.1 all
these particles belong to the basin of attraction of this jam and hence will
join it with time. On the other hand, since there are no particles at neg-
ative sites, this shows also that life-times of all jams in the configuration
y are finite. Note, however, that the life-time of the k-th jam is of order
exp(k).

Choose any particle of this configuration and consider how its veloc-
ity changes in time. First from t = 0 to t = t1 � 0 the particle might stay
in a jam and have zero velocity. Then it is becoming the leading one and
during w time steps preserves its position but accelerates until it get veloc-
ity 1. After that the particle starts moving freely with the velocity 1 until
it will catch up with the next jam. Then, it will again stay in a jam hav-
ing the zero velocity, etc. Due to the calculations above the duration of
the alternative periods of staying in a jam and free moving (interrupted
by short periods of acceleration of length w) are growing exponentially.
From this we get immediately the statement about the lower and upper
time average velocities.

4. STABILITY/INSTABILITY OF THE FUNDAMENTAL DIAGRAM

Qualitatively the main difference between the configurations belong-
ing to the upper and lower branches of the fundamental diagram is related
to the property to be ultimately jammed or not. According to Theo-
rem 3.1, we need to study the stability of this property only for config-
urations with densities in the region (γ1, γ2) where the two branches of
the diagram coexist. The following result demonstrate instability of the
upper branch of the fundamental diagram, while the stability of the lower
branch is discussed in Theorem 4.2.

Theorem 4.1. Let v = 1, a < 1, x ∈ X and let the density ρ(x) be
well defined and ρ(x)>γ1 while V̄ (x)=1 (i.e. the configuration x belongs
to the upper branch of the fundamental diagram). Then, there exists an
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Fig. 5. Averages along a configuration.

ultimately jammed configuration y ∈ X which differs from x on a set S

having zero density.

Proof. We shall construct the perturbed configuration y as follows.
Set � := 0 and for for all k ∈ Z

1+ for which xk � 0 consider a sequence of
numbers Sk,� :=ρ(x[�+1, k]). We denote by n1 the value of k which gives
the first local maximum of Sk,� for which Sk,� >γ1. Then we set � :=n1 and
continue the procedure to find the number n2 giving the local maximum
exceeding the value γ1, etc. (see Fig. 5). Eventually we shall have a mono-

tonically growing sequence ni
i→∞−→ ∞, from which we can further choose a

subsequence ñi satisfying the assumption that |ñi − ñi+1|�2i . Observe that
the set of integers {ñi}i has zero density.

Let yj :=0 for all j <=0 and for positive j we set yj ≡xj except for
the sites ñi where we set yñi

:=0, i.e. we have changed the velocities of the
particles at the sites ñi to 0 for all i. Since ñi is the point of a local max-
imum, the site ñi is the leading point of some jam in y. Our claim is that
the BA of this jam covers the entire segment [ñi−1 + 1, ñi ]. Assume that
this is not the case, i.e. there exists N <ñi such that the BA corresponds
to the segment y[ñi −N +1, ñi ] and denote by M the number of particles
in this segment. Due to the local monotonicity of the sequence Sk,� in the
segment preceding the point ñi the strict inequality γ1 <M/N holds true.
On the other hand, by Theorem 2.1 we have

N =W(y[ñi −N +1, ñi ])+�W(y[ñi −N +1, ñi ])/w�=wM +M.

Thus M/N = 1
1+w

=γ1, which contradicts to our assumption.
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Now, since the density of differing sites is equal to zero (due to
the choice of ñi) while the configuration y satisfies the assumptions of
Lemma 3.3 we get the result.

Clearly, changing back the zero density set of sites in the ultimately
jammed configuration y constructed in the proof above we get the config-
uration x in which all particles will eventually move freely. Therefore, one
might expect that all ultimately jammed configurations with densities in the
interval (γ1, γ2) are also unstable. The following statement shows that this
is not the case.

Theorem 4.2. Let v = 1, a < 1. There exists a regular configuration
x ∈X with γ1 <ρ(x)<γ2 and constants 0<A<B <∞ such that if a con-
figuration y ∈X differs from x at most at A sites in any segment of length
B then y is also regular. In other words, there is an open neighborhood
of the configuration x consisting only of configurations corresponding to
the lower branch of the fundamental diagram.

Proof. Choose positive integers N,M large enough such that γ1 <

M/(N + M) < γ2 and consider a spatially periodic configuration x whose
main period x[1,N + M] consists of N consecutive holes and M consec-
utive particles having zero velocities. Then, the density ρ = M

N+M
of this

configuration is well defined and this configuration evidently satisfies the
conditions of Lemma 3.3.

Our aim is to show that for a small enough (but still nondegenerate)
perturbation the property to have a countable number of infinite life-time
jams arbitrary far to the right is preserved. Moreover we shall see that
there exists a finite N1 such that any segment of length N1 in the per-
turbed configuration y intersects with some infinite life-time jam. Clearly
additional particles in y (compared to x) should not worry us and it is
enough to consider only the case when under the perturbation some par-
ticles are removed from the configuration x or their velocities are changed.

Choose n = k(N + M) with k ∈ Z+ large enough and assume on the
contrary that all jams in y[1, n] have finite life-times and their BAs lie
completely in this segment (i.e. they do not include the site 0). Denote by
m0 the number of free particles in the segment y[1, n] and by m1 the num-
ber of particles belonging to jams in this segment.

By Theorem 2.1, we know that if I is a finite segment corresponding
to a basin of attraction then W(I)>wNp(I ) and Nh(I )>W(I). Thus

|I |=Np(I )+Nh(I )>(w +1)Np(I ).
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Taking into account that each free particle is followed by a hole we con-
clude that

2m0 + (w +1)m1 �n.

On the other hand,

m0 +m1 =Np(y[1, n])�nρ.

Thus

m0

n
� (w +1)ρ −1

w −1
>0.

Observe now that in order to get a free particle in the configuration y we
need to change at least two sites in the configuration x. From this one
immediately can find the constants A,B setting

A :=
⌊

(w +1)ρ −1
w −1

·B
⌋

and choosing B :=2k(N +M) to be so large that A�1.

Using the same argument, one can prove stability for a regular con-
figuration for which instead of space periodicity one assumes that the gaps
between infinite life-time jams are uniformly bounded.

Let us show now that a single site perturbation of a configuration
consisting only of free particles can create a jam whose length grows lin-
early with time. For v = 1, a = 1/2 consider a configuration x having
free particles (with velocity 1) at all even sites and holes at all others.
We perturb this configuration only at the origin setting the velocity at
site 0 to zero and thus creating a jam of length 1. According to The-
orem 2.1, the BA of this jam is infinite. On the other hand, after each
iteration a new particle joins this jam from the left while only once per
two iterations the leading particle leaves the jam, which proves its linear
growth.

A partial result in the direction of a measure-theoretic interpretation
of the notion of regularity for configurations in the density region (γ1, γ2)

gives the following Lemma.
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Lemma 4.1. Let a configuration x has a density 0 < ρ(x) < 1.
Decompose x into alternative blocks of particles Ai and holes Bi : x =
. . .A1B1A2B2 . . . . Then

|An|+ |Bn|∑n
i=1(|Ai |+ |Bi |)

n→∞−→ 0.

In other words, the lengths of blocks can grow only at a sublinear
speed.

Proof. Let us prove that lengths of blocks of holes cannot grow
at a linear speed. Assume contrary to our claim that there exists a
constant 0 < ζ < 1 and a sequence of integers 0 < n1 < m1 < n2 <

m2 < · · · with ni � ζmi for all i such that all sites in the segments
x[ni,mi ] are filled by holes while the segments x[mi,ni+1] are filled by
particles. Since the density of the configuration x is well defined we
have:

ρ(x[1, k])
k→∞−→ ρ(x).

On the other hand,

ρ(x[1,mi ])= niρ(x[1, ni ])
mi

� ζρ(x[1, ni ])
i→∞−→ ζρ(x),

which contradicts to the assumption that the density of x is well defined.
A similar argument applies to blocks of particles as well.

Recalling the connection between the functionals Reg and Reg we see
that the set of regular configurations do not differ much from the set of
all configurations having densities even in the “hysteresis” region and we
expect that for any nontrivial translationally invariant measure on X the
set of regular configurations is a set of full measure.

5. CONCLUDING REMARKS

A deterministic generalization of the Nagel–Schreckenberg traffic flow
model (as well as of the slow-to-start model) with the real valued acceler-
ation has been proposed and studied analytically. It has been shown that
macroscopic physical properties of the model under study such as the time
average velocity of particles in the flow depend crucially on the density of
particles in the flow and these results are described in terms of the cor-
responding fundamental diagrams. Moreover, we have shown that instead
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of space (or space-time) average velocities used earlier in traffic models
the time average velocity can be considered. It is proven that this quantity
characterizing the behavior of an individual particle coincides for all par-
ticles in the flow and in distinction to the space average velocity (which
wildly fluctuates in time) leads to a proper statistical description of the
dynamics.

One of the problems for future analysis is the question what happens
when the initial configuration is random or the dynamics is weakly per-
turbed in random or deterministic sense (e.g., random traffic lights are taken
into account). The main idea in the paper is that without perturbations one
can predict the asymptotic behavior of an individual configuration (and even
of an individual particle in it). Clearly integrating the results according to
some initial distribution one gets predictions for a family of random initial
configurations. One would expect that such questions might be of interest
only in the ‘hysteresis’ region where both branches of the fundamental dia-
gram are present. Even there according to Theorem 4.1 the influence of
the upper branch should be negligible. Another point is that it might be
possible that under arbitrary small perturbations the upper branch of the
fundamental diagram will disappear13 and that the non-regularity of ini-
tial configurations should not matter in the random setting. However to
check these predictions one needs to study a probabilistic version of the
model.

Finally let us mention that it is important to distinguish between
peculiarities related to a trivial divergence of various series due to the fact
that we deal with the infinite phase space (infinite Z

1 lattice) and true
finite-size phenomena taking place even in the case of spatially periodic
configurations (or a finite lattice). The latter issue seems more important
and our result proves that the hysteresis phenomenon exists even in this
case.

APPENDIX: PROOF OF LEMMA 3.3 VIA SPACE-TIME AVERAGING

Lemma 3.3 can be proven also in a more intuitive way using a kind
of a space-time averaging. Since this approach explains the connection
between the time and space averaging we shall discuss it additionally to
the formal proof given in Section 3.

Observe that by the definition of the map T in the case v = 1
we explicitly have the mass conservation law, i.e. after each move one

13From ref. 10, it follows that if v=1, a =1/2 and random perturbations are applied only to
jams but not to free particles the upper branch exists at least for spatially periodic config-
urations.
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particle exchanges its position with one hole. Therefore, we can give a
kind of ‘physical derivation’ of the relation (3.2). Assume that the (time)
average velocity V̄ (x) is well defined and choose a segment of the con-
figuration x of length �, provided � � 1. Then the number of particles
in this segment is equal to Np := �(ρ(x) + o(1/�)), while the number of
holes is equal to Nh :=�(1−ρ(x)+o(1/�)). We are in a position to apply
Lemma 3.2, hence the holes are moving with the average velocity 1/w to
the left. Thus in total Np particles will move to the distance tNpV̄ (x) dur-
ing the time t , while in total Nh holes will move to the distance tNh/w

during this time. Due to the mass conservation these quantities coincide
and thus

t�(ρ(x)+o(1/�))V̄ (x)= t�(1−ρ(x)+o(1/�))/w.

Dividing by t and � and passing to the limit as �→∞, we get

V̄ (x)= 1−ρ(x)

wρ(x)
.

To make this argument rigorous, we need some additional work to
be done. We start with the space-periodic case and restrict ourselves to
just one period. For any given time interval the total shift of all par-
ticles in the ‘spatial period’ is well defined. Dividing this total shift by
the time and by the number of particles in the ‘spatial period’ and pass-
ing to the limit as time goes to infinity (which exists due to the behav-
ior of holes) we get the ‘space-time’ average velocity. On the other hand,
since V̄ (x, i) does not depend on i we deduce that our ‘space-time’ aver-
age is, in fact, just V̄ (x). Let us prove the last statement. Denote the
period length by �. For any moment of time t we have the following rela-
tion:

�∑
i=1

1�0(xi) ·L(x, i, t)=�(1−ρ(x)) · t

w
+R(t),

Here (due to the usage of the indicator function) the summation is
taken over all particles in the ‘spatial period’, the remaining term R(t)

cannot exceed �/w on absolute value, and the value �(1 − ρ(x)) is
equal to the number of holes in the spatial period. Dividing by t , we
get

�∑
i=1

1�0(xi) · V̄ (x, i, t)=�(1−ρ(x)) · 1
w

+O(1/t), (5.1)
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where O(1/t) means a term of order 1/t as t →∞.
On the other hand, by the inequality (2.9) for any two particles ini-

tially located at sites i, j of the ‘spatial period’ and any moment of time t

we have:

|V̄ (x, i, t)− V̄ (x, j, t)|��max
{

1
t
wv,

1
t
|i − j |

}
��2/t,

provided that � is large enough. Thus

∣∣∣∣∣�ρ(x) · V̄ (x, �−, t)−
�∑

i=1

1�0(xi) · V̄ (x, i, t)

∣∣∣∣∣��3/t,

where the value �ρ(x) is equal to the number of particles in the ‘spatial
period’.

Therefore passing to the limit as t →∞ in the relation (5.1) and using
the inequality above, we get

lim
t→∞ V̄ (x, �−, t)= �(1−ρ(x))

�ρ(x)
· 1
w

=
(

1
ρ(x)

−1
)

w−1,

which finishes the proof in the space-periodic case.
In the general non space-periodic case one also can follow a simi-

lar argument. According to our assumption in the configuration x there
are finite jams Ji(t) with infinite life-times, denoted by rectangles in
Fig. 6. Here the parameter t indicates the moment of time. The segment
which starts immediately after the site occupied by the leading particle
of the jam Ji(t) and finishes at the site occupied by the leading parti-
cle of the jam Ji+1, we denote by Ii(t). Then one can proceed as fol-
lows.

(a) The number of holes in Ii(t) is invariant with respect to the
dynamics. Indeed, if a hole was located at time t to the right of a jam
J (t), then for any moment of time t ′ > t when J (t ′) still exists this hole
should be still to the right of J (t ′). The reason is that the right bound-
ary of a jam changes only when its leading particle becomes free. How-
ever, the new leading particle of the jam still remains to the left of our
hole.

(b) The number of particles in Ii(t) can change due to dynam-
ics at most by 1 in both sides. Indeed, the leading particle of each
the jams Ji(t) is becoming free periodically with the period w,
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Fig. 6. Dynamics of traffic jams at moments of time t and t ′ >t .

which is the only way how the number of particles in Ii(t) can
change.

According to these properties one can think about the holes inside of each
segment Ii(t) as a kind of a pump which is pushing the particles through
itself with the constant ‘productivity’ equal to

Nh(Ii(t))

Np(Ii(t))
· 1
w

,

which leads to the desired result.
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